132. Palindrome Partitioning II
Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
Example:
Input: "aab"
Output: 1
Explanation: The palindrome partitioning ["aa","b"] could be produced using 1 cut.
Analysis
左大段, 右小段; Midterm 2. Solution 1: O(n^3). Solution 2: O(n ^ 2);
Solution 1
public int minCut(String s) {
if (s == null || s.length() < 2) {
return 0;
}
int[] m = new int[s.length() + 1];
for (int i = 1; i <= s.length(); ++i) {
if (isPal(s, 0, i - 1)) {
m[i] = 0;
continue;
}
m[i] = i - 1;
for (int j = 1; j < i; ++j) {
if (isPal(s, j, i - 1)) {
m[i] = Math.min(m[i], m[j] + 1);
}
}
}
return m[m.length - 1];
}
private boolean isPal(String s, int left, int right) {
while (left < right) {
if (s.charAt(left) != s.charAt(right)) {
return false;
}
left++; right--;
}
return true;
}
Solution 2
public int minCut(String s) {
char[] ch = s.toCharArray();
int n = ch.length;
int[] cut = new int[n];
boolean[][] pal = new boolean[n][n];
for (int i = 0; i < n; ++i) {
int min = i;
for (int j = 0; j <= i; ++j) {
if (ch[j] == ch[i] && (i - j < 2 || pal[j + 1][i - 1])) {
pal[j][i] = true;
min = j == 0 ? 0 : Math.min(min, cut[j - 1] + 1);
}
}
cut[i] = min;
}
return cut[n - 1];
}